ROMK is required for expression of the 70-pS K channel in the thick ascending limb.
نویسندگان
چکیده
Apical potassium recycling is crucial for salt transport by the thick ascending limb (TAL). Loss-of-function mutations in the K channel, ROMK (Kir1.1; KCNJ1), cause Bartter syndrome, a genetically heterogeneous disorder characterized by severe reduction in salt absorption by the TAL, Na wasting, polyuria, and hypokalemic alkalosis. ROMK(-/-) null mice exhibit a Bartter phenotype and lack the small-conductance (30-pS) apical K channel (SK) in the TAL. However, a distinct 70-pS K channel can also significantly contribute to the apical conductance of TAL. We now examine the effect of ROMK deletion on the functional expression of the 70-pS K channel in the TAL. Functional expression of the 70-pS K channel was low [average channel activity (NP(o)) = 0.02] in ROMK(+/+) mice on a control K diet but increased to 0.27 by high-K intake for 2 wk. In contrast, the high-K diet decreased NP(o) of SK by approximately 30%, from 2.04 to 1.44. In ROMK heterozygous (+/-) mice on a control K diet, SK activity was about one-half of that observed in ROMK(+/+) mice (0.95 vs. 2.04). The high-K diet also reduced SK activity in ROMK(+/-) mice by approximately 40% (from 0.95 to 0.55) but increased NP(o) of the 70-pS K channel from 0 to 0.09 in ROMK(+/-) mice. This corresponds to approximately 30% of channel activity (NP(o) = 0.27) observed in ROMK(+/+) mice. Neither the 70-pS nor the 30-pS K channels were observed in TAL cells from ROMK(-/-) mice on either the normal or high-K diets. Thus functional expression of the 70-pS K channel is enhanced by increasing dietary K and requires expression of ROMK. It is likely that ROMK forms a critical subunit of the 70-pS K channel, accounting for the loss of apical K secretory channel activity in ROMK Bartter syndrome.
منابع مشابه
Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.
This brief review attempts to provide an overview regarding recent developments in the regulation of ROMK channels. Studies performed in ROMK null mice suggest that ROMK cannot only form hometetramers such as the small-conductance (30-pS) K channels but also construct heterotetramers such as the 70-pS K channel in the thick ascending limb (TAL). The expression of ROMK channels in the plasma mem...
متن کاملAcute application of TNF stimulates apical 70-pS K+ channels in the thick ascending limb of rat kidney.
TNF has been shown to be synthesized by the medullary thick ascending limb (mTAL) (21). In the present study, we used the patch-clamp technique to study the acute effect of TNF on the apical 70-pS K+ channel in the mTAL. Addition of TNF (10 nM) significantly stimulated activity of the 70-pS K+ channel and increased NPo [a product of channel open probability (Po) and channel number (N)] from 0.2...
متن کاملRegulation of the ROMK channel: interaction of the ROMK with associate proteins.
The ROMK channel plays an important role in K recycling in the thick ascending limb (TAL) and K secretion in the cortical collecting duct (CCD). A large body of evidence indicates that the ROMK channel is a key component of the native K secretory channel identified in the apical membrane of the TAL and the CCD. Although the ROMK channel shares several key regulatory mechanisms with the native K...
متن کاملAFLUID Decemer 46/6
Wang, WenHui. Regulation of the ROMK channel: interaction of the ROMK with associate proteins. Am. J. Physiol. 277 (Renal Physiol. 46): F826–F831, 1999.—The ROMK channel plays an important role in K recycling in the thick ascending limb (TAL) and K secretion in the cortical collecting duct (CCD). A large body of evidence indicates that the ROMK channel is a key component of the native K secreto...
متن کاملCarbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb.
We have investigated the expression of heme oxygenase (HO) in the rat kidney and the effects of HO-dependent heme metabolites on the apical 70-pS K+ channel in the thick ascending limb (TAL). Reverse transcriptase-PCR (RT-PCR) and Western blot analyses indicate expression of the constitutive HO form, HO-2, in the rat cortex and outer medulla. Patch-clamping showed that application of 10 microM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 286 3 شماره
صفحات -
تاریخ انتشار 2004